首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3716篇
  免费   630篇
  国内免费   953篇
测绘学   252篇
大气科学   863篇
地球物理   863篇
地质学   2008篇
海洋学   425篇
天文学   46篇
综合类   232篇
自然地理   610篇
  2024年   9篇
  2023年   46篇
  2022年   106篇
  2021年   137篇
  2020年   147篇
  2019年   163篇
  2018年   152篇
  2017年   134篇
  2016年   199篇
  2015年   214篇
  2014年   268篇
  2013年   222篇
  2012年   246篇
  2011年   257篇
  2010年   218篇
  2009年   259篇
  2008年   290篇
  2007年   330篇
  2006年   275篇
  2005年   195篇
  2004年   184篇
  2003年   169篇
  2002年   155篇
  2001年   119篇
  2000年   117篇
  1999年   102篇
  1998年   90篇
  1997年   93篇
  1996年   76篇
  1995年   71篇
  1994年   67篇
  1993年   48篇
  1992年   39篇
  1991年   28篇
  1990年   22篇
  1989年   12篇
  1988年   14篇
  1987年   3篇
  1986年   8篇
  1985年   7篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1973年   1篇
  1954年   2篇
排序方式: 共有5299条查询结果,搜索用时 718 毫秒
1.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
2.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
3.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
4.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
5.
In the frame of 2D-static problems one approaches the problem of elastic-NRT (not-resisting tension) semi-plane loaded on its limit line. This problem is intended to model the stress situation induced in the soil by a foundation structure. The solution, in terms of activated stress field, is searched for in the class of stress fields satisfying equilibrium and admissibility conditions, by applying an energy approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
7.
In this paper the second order characteristic (discontinuous bifurcation) condition is derived for the granular flow (fully plastic) equations. This second order bifurcation equation is shown to be formally identical to the first order localization requirement during steady elastoplastic deformation provided the elastic compliance tensor is substituted for the product of the plastic multiplier with the flow Hessian. For isotropic yield and flow functions the invariant form of the characteristic condition is given in detail, as well as an alternative expression in adapted co‐ordinates. The characteristic condition can be regarded as defining a hardening function which is maximized to identify the critical angles. When the method is applied to 3D Coulomb flow, Mohr's 3D fracture plane conditions are obtained uniquely. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
8.
Summary. A first-order form of the Euler's equations for rays in an ellipsoidal model of the Earth is obtained. The conditions affecting the velocity law for a monotonic increase, with respect to the arc length, in the angular distance to the epicentre, and in the angle of incidence, are the same in the ellipsoidal and spherical models. It is therefore possible to trace rays and to compute travel times directly in an ellipsoidal earth as in the spherical model. Thus comparison with the rays of the same coordinates in a spherical earth provides an estimate of the various deviations of these rays due to the Earth's flattening, and the corresponding travel-time differences, for mantle P -waves and for shallow earthquakes. All these deviations are functions both of the latitude and of the epicentral distance. The difference in the distance to the Earth's centre at points with the same geocentric latitude on rays in the ellipsoidal and in the spherical model may reach several kilometres. Directly related to the deformation of the isovelocity surfaces, this difference is the only cause of significant perturbation in travel times. Other differences, such as that corresponding to the ray torsion, are of the first order in ellipticity, and may exceed 1 km. They induce only small differences in travel time, less than 0.01s. Thus, we show that the ellipticity correction obtained by Jeffreys (1935) and Bullen (1937) by a perturbational method can be recovered by a direct evaluation of the travel times in an ellipsoidal model of the Earth. Moreover, as stated by Dziewonski & Gilbert (1976), we verify the non-dependence of this correction on the choice of the velocity law.  相似文献   
9.
In this paper, we report observations of unusual whistlers recorded at Jammu (geomag. lat. = 22°26′N; L = 1.17), India on March 8, 1999 during the daytime. They are interpreted as one-hop ducted whistlers having propagated along higher L-values in closely spaced narrow ducts from the opposite hemispheres. After leakage from the duct, the waves might have propagated in the earth-ionosphere waveguide towards the equator in surface mode. Tentative explanation of the dynamic spectra of these events is briefly presented.  相似文献   
10.
不整合运移通道类型及输导油气特征   总被引:12,自引:1,他引:11  
高长海  查明 《地质学报》2008,82(8):1113-1120
在对不整合空间结构特征研究的基础上,提出了油气沿不整合运移的通道类型:宏观上,存在由不整合面之上底砾岩和不整合面之下半风化岩石两种高效运载层组合成的双运移通道型和单运移通道型两种通道类型;微观上,底砾岩连通孔隙、半风化岩石构造卸荷风化裂缝系统及溶蚀孔洞系统可作为油气运移的主要通道。通过对不整合面上、下岩石物性分析,认为半风化岩石“孔洞缝”系统较底砾岩连通孔隙有更高的输导油气的能力。研究结果表明,不同的运移通道类型具有不同的输导油气特征。在地史时期,构造裂缝系统和溶蚀孔洞系统一直是不整合输导油气的主要通道;对于软地层构成的不整合来说,开始应是卸荷、风化裂缝系统和底砾岩连通孔隙共同构成不整合输导油气的主要通道,当上覆沉积载荷达到一定程度后,主要是底砾岩连通孔隙起输导油气通道作用;对于脆硬地层构成的不整合来说,卸荷、风化裂缝系统和底砾岩连通孔隙一直是不整合输导油气的主要通道。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号